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Abstract 
With the emergence of powerful deep learning-based tools, computa9onal protein design has 
become a widely accessible technique. Nowadays, it is possible to perform both sequence and 
structure design in a ma>er of minutes, making the technology a>rac9ve to the broader scien9fic 
community. In protein design campaigns, one of the most common in silico strategies to evaluate 
how well a sequence encodes a target structure is the so-called self-consistency or refolding 
pipeline. In this approach, a structure predic9on model is used to refold the designed sequence 
to probe whether it is compa9ble with the intended structure, and is evaluated via two metrics 
linked to experimental success: the confidence score of the predicted structure (pLDDT) and the 
self-consistency root-mean-square devia9on (scRMSD), which measures how closely the refolded 
structure matches the target. In this work, we systema9cally evaluate how different models and 
structure predic9on seNngs impact these metrics, and to what extent they can be used to reliably 
filter sequence design candidates. We show that evolu9onary informa9on can obscure folding 
models’ abili9es to assess sequence-structure compa9bility, reducing the predic9ve performance 
of refolding metrics for experimental success, par9cularly for designs that share homology with 
natural sequences. We further highlight limita9ons of refolding metrics, including their sensi9vity 
to structural features, such as flexibility. Our findings raise awareness of poten9al piRalls in 
refolding-based evalua9on and support more informed use of these metrics in protein design 
campaigns. 
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1 Introduc/on 
The emergence of highly precise protein structure predic9on methods, such as AlphaFold2 (AF2)1 
and ESMFold2 has catalyzed a paradigm change in the field of protein design. Enabled by these 
and other breakthroughs in deep learning (DL), de novo design has rapidly expanded from a niche 
technology with modest, albeit striking achievements, to a now widely applicable method.3 
Building on the DL architectures for protein structure predic9on, many new computa9onally 
efficient and increasingly user-friendly methods for both backbone and sequence design 
complement established physics-based approaches like Rose>a.4,5 Strikingly, the field is seeing 
drama9c improvements in experimental success rates, with designs that successfully express in 
cellular hosts now oZen displaying remarkable structural similarity to computa9onal models, 
highligh9ng the accuracy of state-of-the-art modelling tools.6,7 These rapidly advancing 
algorithmic and technical developments have enabled notable achievements, including the design 
of mul9-chain complexes with novel topologies,8 highly affine binders for therapeu9cally relevant 
protein targets,9,10 solubility-op9mized redesign of enzymes with improved cataly9c efficiency,11 
and even shape-condi9oned structures encoding le>ers from the English alphabet.12,13 Given 
these advances, DL-based protein design matured into a reliable tool used both in fundamental 
as well as applied biological research. 

Protein design studies are almost always driven by the goal of achieving a par9cular biological 
func9on, and thus usually comprise iden9fying a func9on-compa9ble protein structure, as well as 
an amino acid sequence that encodes that structure.14,15 A broad dis9nc9on is made between 
redesign tasks, in which the func9onal or physicochemical proper9es of a natural template are 
op9mized, and de novo design, employed for instance when no func9onal equivalent in biology is 
known. Depending on the goal and strategy, various tools may be applied for de novo design. The 
most established design pipeline is, however, a two-step approach: first, a protein backbone is 
generated de novo, and a second model predicts an amino acid sequence encoding the target 
structure in a downstream step (Fig. 1). Numerous specialized and general-purpose tools have 
been developed for backbone genera9on, with diffusion-based genera9ve models such as 
RFdiffusion8 currently exhibi9ng a par9cular prominence. In contrast, fewer op9ons exist for 
sequence design, which is currently dominated by the ProteinMPNN family of models.16,17 While 
models that predict a sequence given structure are oZen referred to as inverse folding models, 
the term was originally defined more strictly as iden9fying a sequence that solely adopts the 
target, and no other low-energy conforma9on.18,19 As this is ul9mately the desired outcome, most 
in silico pipelines include an evalua9on step that probes the absence of these off-target folds for 
designed sequences. 

Notably, despite a diversity in design objec9ves and approaches, the majority of design campaigns 
rely on a very similar strategy for this evalua9on. The most widely implemented approach in the 
field involves subjec9ng the designed sequence to a structure predic9on model, i.e. the reverse 
of the sequence design process (Fig. 1). The basis for using refolding in this way lies in the 
assump9on that folding models have implicitly learned an approxima9on of the energe9cs of 
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protein structures and thus can be used to assess sequence-structure compa9bility.20 In its 
en9rety, this so-called refolding or self-consistency (sc) pipeline assesses whether a designed 
sequence reliably encodes the target structure. Importantly, structure predic9on serves not only 
as an orthogonal quality control step on the output of the design workflow, but is also widely used 
as a quan9ta9ve tool to filter and rank sequence candidates. Design quality is generally assessed 
using two metrics derived from the predicted model: the predicted local distance difference test 
(pLDDT), and the structural devia9on from the design target, usually measured as the self-
consistency root mean square devia9on (scRMSD) computed by superimposing the predicted 
structure onto the target backbone. Only sequences with pLDDT values above and scRMSDs below 
a predefined threshold are chosen for further characteriza9on.8,16,21 Following a recent 
terminology shiZ, which extends a concept ini9ally reserved for backbones,22 such selected 
sequences may be referred to as “designable” (Fig. 1).23,24  

 
Figure 1. Designability assessment with the refolding pipeline in a fixed-backbone design task. Star<ng from a 
target structure of a na<ve or a de novo-designed protein, a sequence design model generates a pool of 
candidate sequences. Next, structures of the designed sequences are refolded using a structure predic<on 
model and are subsequently superposed onto the target structure. If the predicted structure is of high 
confidence (high pLDDT) and exhibits liGle devia<on from the target in Euclidean space (low scRMSD), the design 
is considered successful. 

Notably, no standardized benchmarks or reference values for the scRMSD and pLDDT thresholds 
exist. Rather, each study inconsistently chooses the values ad hoc. While oZen, the scRMSD is 
computed via a global Cα-atom superposi9on with a designability threshold set to 1.5-2 Å,23 some 
studies use the structure alignment’s template modeling (TM) score, with a common threshold of	
0.5.21,25,26 pLDDT thresholds show even less consensus, ranging from 70 to 90 across 
studies.11,16,24,27 Moreover, despite the widespread use of the refolding pipeline,16,24,27 there 
remains an uncertainty over the degree of correla9on between designability criteria and 
experimental success. A compounding issue is that both scRMSD and pLDDT can be cri9cally 
influenced by the folding model and the choice of seNngs for the structure predic9on step, which 
also differ. Protein design campaigns focused on the redesign of protein sequences frequently use 
AF2 with mul9ple sequence alignments (MSAs), either provided explicitly11 or generated 
automa9cally by ColabFold28 in its default seNngs.29,30,31,32 In contrast, most studies focusing on 
de novo structure genera9on followed by sequence design report deple9ng AF2 of evolu9onary 
informa9on by running predic9ons in single sequence mode,24,25,27,33 or use the ESMfold structure 
predic9on model.13,34,35  
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As there has never been a dedicated evalua9on on how applying designability thresholds affects 
experimental success rates—widely referred to as the ability of structure predic9on to act as an 
“oracle”36—we resolved to a>empt a systema9c analysis of available data. We hypothesized that 
the inconsistent use of models and metrics may introduce reproducibility issues at best and 
systema9c errors at worst, thereby undermining the reliability of the refolding pipeline and 
promo9ng the selec9on of subop9mal designs for experimental tes9ng. In this work, we thus 
inves9gate how different predic9on and evalua9on seNngs affect in silico designability in the 
context of a fixed backbone design task. We first demonstrate that for both natural and de novo 
designed sequences, the presence of evolu9onary informa9on in the structure predic9on step 
reduces the folding models’ ability to assess sequence-structure compa9bility, thereby reducing 
the predic9ve power of refolding metrics for experimental success. We next inves9gate the 
limita9ons of running the refolding pipeline without evolu9onary informa9on and highlight the 
inherent limita9ons of refolding-based designability. Specifically, we show that certain structural 
features, such as disordered or flexible regions, can confound refolding metrics, leading to less 
reliable designability assessments. 

2 Results 
2.1 Evolutionary information impairs the discriminative ability of the refolding pipeline   
We began our inves9ga9on by asking how well folding models used in a classical refolding pipeline 
dis9nguish good from bad sequence designs, that is, those that fold into the desired structure and 
those that do not. Concomitantly, we assessed how this discrimina9ve ability is affected by the 
inclusion of evolu9onary informa9on, which is provided explicitly to structure predic9on models 
like AF2 in the form of an MSA, or implicitly in the form of ESM embeddings.37 We hypothesized 
that if a sequence design shares significant iden9ty with the natural template, both informa9on-
rich sequence alignments as well as protein language model embeddings could strongly bias the 
folding model towards na9ve-like structure predic9ons. As a result, even badly designed 
sequences might be assigned inflated, ar9ficially high confidence metrics, compromising the 
reliability of the designability assessment. 

To test this, we built a dataset composed of small, structurally dis9nct natural proteins from the 
SCOPe database (Methods 4.3-4.4), for which abundant evolu9onary informa9on, i.e. a deep MSA 
is present (Fig. S1, SCOPe WT). Although AF2 normally relies on MSAs,20 it can also predict 
structures from single sequences (AF2 ss). To enable a fair comparison between designability 
computed with and without MSAs, we trimmed the set to 50 randomly selected proteins that are 
classified as designable when predicted by AF2 ss using a lenient pLDDT threshold of 70 (Methods 
4.2). Star9ng from their na9ve sequences, we then gradually mutated 10% to 60% of arbitrarily 
selected residues to random amino acid tokens, thereby simula9ng badly designed sequences 
with variable iden9ty to the na9ve sequence. For each frac9on of mutated residues, we generated 
64 “designs” to reduce the impact of sequences that by chance may contain less disrup9ve 
muta9ons or share similari9es to natural homologs. We then ran structure predic9ons for all 
mutated sequences using different models and input seNngs. In addi9on to ESMfold with default 
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seNngs, we used AF2 ss or AF2 provided with a precomputed MSA (AF2 MSA) (Methods 4.2). 
Addi9onally, we reasoned that we could assess the effect of the na9ve MSA context on the model’s 
confidence metrics by predic9ng structures with the MSA signal at mutated posi9ons omi>ed. We 
thus ran another set of AF2 predic9ons using MSAs in which en9re alignment columns were 
masked at subs9tu9on sites (AF2 MSA mask).  For all approaches, we computed designability as 
the frac9on of predicted structures sa9sfying scRMSD ≤	2.0 Å and a 70, 80, or 85 pLDDT threshold 
(Methods 4.1, Fig. 2a). 

If folding models were reliable “oracles” of poor designs, we would expect a sharp decrease in 
designability upon random mutagenesis, given that introducing more than a handful of random 
muta9ons into natural proteins quickly leads to misfolding.38 Strikingly, however, we found that 
AF2 with explicit MSAs predicted structures of strongly mutated sequences with high confidence 
and low scRMSD to the na9ve target. At 10% muta9ons, nearly all sequences are classified as 
designable by AF2 MSA regardless of the pLDDT threshold applied (Fig. 2b). Even at 30% 
muta9ons, over 60% of mutants remain designable with a pLDDT ≥70, while stricter thresholds of 
80 and 85 reduce the designable frac9on to about 40% and 30%, respec9vely. The AF2 MSA mask 
strategy produced nearly iden9cal results, sugges9ng that even par9al evolu9onary informa9on 
in otherwise deep MSAs is sufficient to bias AF2 towards making high-confidence predic9ons. 
Contrarily, AF2 ss demonstrated a faster drop in the mutants’ designability: at 20% muta9ons and 
higher, almost no sequences were classified designable. ESMfold also performed substan9ally 
be>er than AF2 MSA, and at a pLDDT ≥85 designability threshold approached the performance of 
AF2 ss. However, since AF2 ss and ESMfold rarely predicted the target structures of the unmutated 
natural sequences with pLDDTs above 80, the overall designability became rela9vely low at these 
thresholds (Fig. 2b).  

In these experiments, many natural sequences (without muta9ons) predicted with ESMfold and 
AF2 ss already yielded structures with metrics below the designability thresholds. To create a 
dataset with higher frac9ons of designable sequences, we redesigned the SCOPe proteins with 
ProteinMPNN (pMPNN) (Methods 4.4), a sequence design model known to yield higher pLDDT 
structures in single sequence mode.16 For this dataset, we again mutated at defined frac9ons and 
computed designability as described for the na9ve sequences. Crucially, we found that the 
discrimina9ve power of AF2 ss decreased for mutants in the pMPNN background, compared to 
natural ones. At 10% mutated posi9ons, the frac9on of designable sequences increased from 
about 10% to nearly 60%, and at 20% muta9ons from nearly 0% to 20% at a pLDDT threshold of 
70 (Fig. 2c). Indeed, this shiZ can be a>ributed to the overall higher pLDDT values assigned by 
AF2 ss to the pMPNN sequences (Fig. S2). In contrast to AF2 ss, ESMfold’s performance remained 
nearly unchanged compared to the experiment with mutants derived from natural sequences. 
While AF2 MSA’s discrimina9ve power improved marginally for pMPNN-derived mutants, it 
remains very poor. Interes9ngly, although pMPNN shows about 41% na9ve sequence recovery in 
our dataset, the MSAs computed for pMPNN-derived mutants remain nearly as deep as those of 
natural sequences (Fig. S2), which appears sufficient to bias structure predic9ons towards the 
natural homologs.  
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Figure 2. a) Schema<c overview of the mutagenesis experiment. Random posi<ons in na<ve sequences were 
randomly mutated at specified percentages and given to MSA-free structure predictors like AF2 in single 
sequence mode or ESMfold. Alterna<vely, AF2 was given MSAs of homologous sequences to the mutant (AF2 
MSA) or the same alignment masked at mutated posi<ons (AF2 MSA mask). b) Designability of 50 random SCOPe 
proteins at various mutagenesis percentages. c) Same as in b) but using pMPNN designs as a star<ng sequence. 
d) RoseGa energy and spa<al aggrega<on propensity (SAP) scores for structures classified as designable by AF2 
MSA in b); sample counts indicated by numbers on top. e) Sequence and structure alignment of an example of 
a high-confidence structure of a mutant deemed designable by AF2 MSA at 30% mutated residues (SCOPe: 
d1ew4a, pLDDT 94, scRMSD 1.3). Its energy and SAP values are indicated by stars in d) and e). Mutant in salmon, 
na<ve in white. 
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To address the possibility that the folding models’ high score for the randomized sequences might 
be due to a high frac9on of them s9ll being able to fold into the target, we computed energies and 
spa9al aggrega9on propensi9es (SAP) with Rose>a4,39 for all mutants deemed designable by AF2 
MSA. We observed a clear trend of markedly elevated median energies and SAP scores with an 
increasing frac9on of mutated residues (Fig. 2d), strongly sugges9ng their unphysical nature. 
Visual inspec9on of highly mutated variants that yielded predicted structures with high pLDDT and 
low scRMSD confirmed this no9on; the structures frequently showed mul9ple hydrophobicity and 
charge-altering muta9ons on both surface and in the core, highly likely to disrupt structural 
integrity of the fold (Fig. 2e).  

These experiments suggest that refolding metrics should be treated cau9ously when evolu9onary 
informa9on is included, where folding models struggle to flag designs with inappropriate residues 
even at high frequencies. While discrimina9ve power increases if MSAs are absent, overall 
performance drops, thereby limi9ng the ability of folding models to assess sequence-structure 
compa9bility of designed sequences.  

2.2 Evolutionary information reduces the predictive power of refolding metrics for experimental 
success 

AZer observing that providing evolu9onary informa9on reduces the ability of folding models to 
discriminate between nonsense designs and natural or pMPNN-designed sequences encoding 
natural backbones (Fig. 2), we next sought to examine this behavior in real-life protein design 
datasets. Using literature data from diverse protein design studies repor9ng experimentally tested 
sequences across different design pipelines and protein topologies (Fig. 3a) (Methods 4.5), we 
assessed the folding models’ ability to dis9nguish successful designs from failures. Notably, such 
analyses are complicated by factors that blur the dis9nc9on between truly bad designs—where a 
physical inability to fold prevents expression—from those merely affected by experimental 
factors—e.g. unfavorable transcrip9on or protein degrada9on due to serendipitous cellular 
binding. We reasoned that if folding models were unaffected by the la>er, such effects should 
occur randomly across all sequences and thus not systema9cally skew the models’ abili9es to act 
as oracles in one or the other direc9on. 

To test whether this was the case and rule out that the folding models’ training led it to in some 
way internalize experimental expression success, we tested whether models could dis9nguish 
between natural (and thus certainly physically plausible) proteins that do or do not express 
heterologously. To that end, we made use of the SoluProt dataset, which contains binary 
expression data for thousands of natural proteins.40 To be able to calculate scRMSDs and compute 
designabili9es, we selected all proteins for which experimental structures are available, and 
further selected subsets of the soluble and insoluble entries with iden9cal length distribu9ons 
(Methods 4.5, Fig. S3). In addi9on, we performed pLDDT-only calcula9ons for 1000 en9rely 
randomly selected SoluProt sequences. As expected, none of the folding models showed 
discernible ability to predict heterologous protein expression success: the designable frac9on did 
not differ significantly between soluble and insoluble proteins with available structures (Fig. S4), 
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and the median pLDDTs of the unbiased set were also iden9cal (Fig. S5). We therefore conclude 
that any discriminatory power we would observe in our analysis would largely be a>ributable to 
the model’s assessment of physical stability, rather than an implicit “knowledge” about 
experimental effects. 

We then proceeded to predict structures of the literature-collected designs with AF2 MSA, AF2 ss, 
or ESMfold and probed their ability to iden9fy successful designs. We computed pLDDT and 
scRMSD metrics for all 493 sequences and assessed whether they passed designability thresholds. 
Throughout the text, we refer to the experimental success if 1) the designed sequence could be 
expressed, 2) remained soluble, and 3) folded into the desired state, as verified by monodispersity 
in SEC or through exhibi9ng expected CD spectroscopy profiles. To facilitate comparison across 
studies that used various designability thresholds in their analyses, we computed threshold-
independent areas under the curve (AUC) of receiver opera9ng characteris9c (ROC) curves. 

  
Figure 3. a) Datasets used in this experiment. RoseGa-based workflows are indicated with the RoseGa logo. b) 
Area under the ROC curve (AUC) for pLDDT and scRMSD as predictors of experimental success across various 
literature protein (re)design datasets for either the default 3 recycles (black outline) or 48 recycles (no outline). 
The horizontal line marks AUC 0.5 where predic<ve power is random. c) Sequence length distribu<ons and MSA 
depths, expressed as median per-residue Neff. Neff values were calculated by coun<ng non-gap residues at each 
MSA posi<on using a weigh<ng scheme and taking the median.  

While evolu9onary informa9on had negligible impact in some cases, it significantly impaired the 
predic9ve power of pLDDT and scRMSD in several datasets (Fig. 3b). The strongest performance 
drop occurred for the two β-barrels datasets, while a small difference was observed for the novel 
α/β and complex α sets. When inves9ga9ng the cause of the variability across the datasets, we 
found no apparent correla9on with sequence length, but noted that it was likely driven by the 
underlying MSA depths (Fig. 3c): since the sequences in two datasets (the Solubilized and Foldit 
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datasets) had no or very few homologous sequences in databases, the resul9ng empty or very 
shallow MSAs were essen9ally equivalent as input for AF2 to single sequence mode. Interes9ngly, 
while another study reported ESMfold to outperform AF2 MSA as an oracle,41 our analysis suggests 
it remains inferior to AF ss except for datasets that fall into a shallow MSAs regime. As previously 
noted,24 we found that op9mal folding of the transmembrane β-barrels required running folding 
models with more recycles. Overall, however, running models with few or many recycles did not 
substan9ally influence the results (Fig. 3b).  

To be>er understand AF2 MSA’s poorer performance, we computed the difference in precision 
and F1 scores between AF2 ss and AF2 MSA at varying scRMSD and pLDDT cutoff combina9ons. 
For the deep MSA datasets, we found that the highest precision and F1 scores are consistently 
achieved with AF2 ss, confirming it as the be>er choice for reasonable thresholds (Fig. S6a). This 
effect is largely driven by a lower false posi9ve rate for AF2 ss (Fig. S7), mirroring our previously 
noted tendency of AF2 MSA to be overly confident about poor designs. However, single sequence 
mode is not uniformly superior (Fig. S8): depending on dataset, MSA mode can match or exceed 
its performance at specific threshold combina9ons, and the loca9on of the op9mum varies widely 
(pLDDT 70-90; scRMSD 1-4 Å). 

Although our iden9fica9on of these op9ma is inherently retrospec9ve and cannot prescribe 
thresholds for a new design campaign, the results indicate that design campaigns could benefit 
from adjus9ng thresholds aZer an ini9al experimental round. For the first pass, the prac9cal reality 
of choosing thresholds to achieve a reasonable class balance has currently no good alterna9ve. 
Importantly, our findings show that evolu9onary informa9on can directly alter refolding metrics 
and, in some cases, diminish their reliability as predictors of experimental success. 

2.3 Limitations of AF2 in single sequence mode for refolding-based designability assessment 
So far, our analysis has established that, despite limited overall performance, AF2 ss best iden9fies 
unphysical sequences as undesignable (Fig. 2) and most frequently predicts experimental success 
correctly across our datasets (Fig. 3). We next sought to inves9gate prac9cal limita9ons of its 
applicability and poten9al remedies. Previous studies2,20 and our mutagenesis experiment 
indicated that AF2 struggles to predict accurate structures of natural sequences in single sequence 
mode, whereas pMPNN or protein language model designs yield high confidence models.16,25,42 
However, whether predic9on seNngs or specific structural features could impair AF2’s 
applicability for designability assessment has not been thoroughly examined. 

To inves9gate this at scale, we computed the designability of a cleaned subset of the SCOPe 
dataset consis9ng of approximately ten thousand domains (Methods 4.6), using both the natural 
sequences and pMPNN designs with the lowest scRMSD to the natural target structure. We first 
assessed the influence of protein length on metrics computed with AF2 ss and found a strong 
inverse correla9on: while already only 40% of the shortest na9ve sequences in our test (up to 50 
amino acids) passed the permissive designability thresholds of pLDDT ≥70 and scRMSD ≤2.0 Å, 
this frac9on quickly approached 0 beyond a length of 150 residues (Fig. 4a-c). In contrast, pMPNN 
designs exhibited a substan9al increase in designability across all lengths. While natural sequences 
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rarely reached pLDDT values above 70, pMPNN designs consistently exceeded this threshold up 
to 200 residues and achieved average scRMSD values near 2 Å (Fig. 4a-c) up to a length of 150.  

  
Figure 4. Structural characteris<cs affec<ng designability of the SCOPe dataset. a) Designability of proteins from 
SCOPe as a func<on of their length. ScaGer points report mean values for a given length bin. b-c) pLDDT and 
scRMSD values of the proteins from a). Designability thresholds for pLDDT ≥ 70 and scRMSD ≤ 2.0 Å are depicted 
as grey dashed lines. d) Percentage of helices, strands, and coils for structures from natural SCOPe sequences. 
e) Percentage of designable sequences from SCOPe domains and f) their pMPNN designs ordered by SCOPe 
class. For each class, a uniform length distribu<on between 60 and 300 residues of pMPNN-designed sequences 
was randomly selected from the ini<al SCOPe dataset. g) Visualiza<on of representa<ve structures for SCOPe 
classes. a: all-α, b: all-β, c: α/β (mixed), d: α+β (segregated). 

When we scru9nized designable and undesignable SCOPe proteins for structural characteris9cs 
encoded by their natural sequences, we iden9fied an overrepresenta9on of α-helices compared 
to β-strands or coils (Fig. 4d) in all designable sequences. To test if this bias persists across SCOPe 
classes independent of sequence length, we selected a uniform length distribu9on between 60 
and 300 residues for each SCOPe class. Inves9ga9ng the designability of both na9ve sequences 
(Fig. 4e) and the lowest-scRMSD pMPNN-designs (Fig. 4f), we found that class a represen9ng α-
helical domains systema9cally achieved higher frac9ons of designable sequences than other 
classes.  

These results reveal the conundrum protein designers face when using AF2 ss as an oracle: if it 
can fold a significant frac9on of sequences in a set, it can indeed be leveraged to enrich the frac9on 
of foldable designs in candidate sets. However, for sequences which do not exhibit as 9ght a 
sequence-to-structure mapping as pMPNN designs, and which encode even medium-sized or 
mixed secondary structure proteins, the inability to accurately predict any structures severely 
limits its use as an oracle.  
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2.4 Refolding-based designability assessment is sensitive to disordered and flexible regions 
Observing that both sequence and structure proper9es influence designability distribu9on and 
thus the reliability of refolding metrics as predictors of experimental success, prompted us to 
examine other factors that could affect performance. We suspected that one clue might lie in the 
pronounced designability gap for AlphaFold Database (AFDB) structures. As observed by Lin et 
al.,43 pMPNN-redesigned AFDB structures show only about half the designability of designs 
generated from natural structures taken from PDB. The authors hypothesized that the observed 
discrepancy might arise from atomic inaccuracies in AFDB models or limited generaliza9on of 
sequence design models trained solely on PDB data.43 Similarly, designability-based performance 
drops were also observed when using high-quality AF2 predic9ons for training backbone design 
models.34 These findings prompted us to inves9gate par9culari9es in AFDB structures that may 
render refolding-based designability assessment unreliable. 

We first hypothesized that the lower average designability of AFDB structures might stem from 
out-of-distribu9on folds, i.e. domains with no sequence and structure similarity to experimentally 
resolved structures. These so-called “dark clusters” might be less amenable to inverse folding, 
driving designability down.44 We thus compiled datasets of high-pLDDT (>80) AFDB structures of 
either “light” or “dark” FoldSeek cluster representa9ves and included a set of SCOPe PDB domains 
as a baseline. Each set consisted of 1000 random proteins selected to represent iden9cal length 
distribu9ons. We then designed 8 sequences per structure with pMPNN and, for comparability 
with Lin et al.,43  predicted structures with ESMfold, before compu9ng designability for the lowest-
scRMSD design. While we were able to reproduce the previously observed designability gap, the 
designability metrics were similarly lowered for dark and light cluster representa9ves (Fig. 5a). 

Although these results led us to exclude dark clusters as the primary cause of reduced designability 
in AFDB-based designs, they prompted us to examine structural differences between the datasets. 
Notably, secondary structure recurrently impacted our analyses: the high-pLDDT dark cluster 
representa9ves were enriched in α-helices (Fig. S9), which poten9ally offset a more challenging 
structure predic9on of out-of-distribu9on folds. Similarly, among designable sequences in our 
SCOPe set, helices were over, and coils underrepresented (Fig. 4d). Yet, when comparing overall 
secondary structure content, we found that the AFDB set is not “disadvantaged” by lower helix or 
higher coil content (Fig. S9). We then recognized a key dis9nc9on between the two databases, 
however: PDB structures frequently lack electron density for flexible loops and termini, and 
deposited structures are oZen deliberate trunca9ons of disordered or insoluble domains (Fig. 5b). 
Conversely, AFDB entries are predic9ons of the full-length sequence and oZen span disordered 
regions within otherwise confidently predicted models. Indeed, low pLDDT intrinsically disordered 
regions cons9tute a substan9al propor9on of AFDB models,45,46,47 and differences in architecture 
and training across folding models may cause different models to not converge on the same 
conforma9on. As a consequence, when compu9ng designability, scRMSD of ESMfold (or any other 
folding model) predic9ons to the target AFDB structures could become ar9ficially high, even 
though the structured part of the protein is predicted correctly and results in an op9mal 
alignment. 
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To test this hypothesis, we selected 1000 random SCOPe proteins in which the corresponding 
AFDB entries differed by 5-50 residues at the termini, and truncated the full-length AF2 predic9ons 
to match the PDB-deposited length. In this way, we obtained three datasets for the same selec9on 
of proteins: PDB, full-length AFDB structures (AFDB-full), and a>enuated AFDB structures (AFDB-
a>, Fig. 5c). We again applied the refolding pipeline to these datasets by genera9ng 8 pMPNN 
designs per structure, predic9ng structures with ESMfold, and compu9ng designability for the 
lowest-scRMSD design. In contrast to full-length models, AFDB-a> structures exhibited the same 
high designability as observed for the PDB (Fig. 5d). When disentangling the two metrics, we found 
that low designability of AFDB-full is not driven by lower pLDDTs, but substan9ally higher scRMSD 
values (Fig. 5e), corrobora9ng our hypothesis. As scRMSD depends on structural alignment, this 
result may be explained by two effects: either the flexible termini in full-length predic9ons inflate 
the mean scRMSD, or trunca9on improved the global alignment by preven9ng flexible regions 
from biasing the fit (Fig. 5b). 

To address this ques9on without having to rely on experimental structures to explicitly iden9fy 
flexible regions as we did in the a>enua9on approach, we implemented an adapted pipeline for 
correc9ng the designability metrics: to avoid the effects of structural misalignment due to 
unstructured parts, we realigned the structures under exclusion of all outliers in the per-residue 
scRMSD aZer an ini9al alignment (Fig. 5f). Moreover, we took the median instead of the mean 
scRMSD, to prevent an inflated average aZer realignment. In addi9on to this simple custom 
approach, we also compared established tools that could improve the outcome of using the 
default Kabsch alignment method: bio9te’s “superimpose_without_outliers,”48 which also 
removes sta9s9cal outliers but iterates un9l convergence; Sheba,49 which considers residue 
environments in 1D and itera9vely iden9fies matching pairs in 3D; and TMalign, which op9mizes 
the Kabsch rota9on matrix using the global TM-score.50 While TMalign and Sheba did not rescue 
the AFDB-full set to the designability of the PDB or AFDB-a> sets, both approaches of realigning 
aZer outlier rejec9on resulted in a full rescue when combined with the median scRMSD (Fig. 5g). 
This outcome indicates that the presence of flexible outlier regions can indeed result in significant 
global misalignments, and that a simple RMSD-based Kabsch alignment aZer a single round of 
iden9fying outliers can mi9gate the issue.  

As this analysis was performed on a set of structures preselected to contain flexible tails, we next 
sought to validate the observed rescue in an unbiased set. To that end, we used the previously 
collected light and dark cluster AFDB representa9ves (Fig. 5a) and calculated the median scRMSDs 
aZer single outlier-rejected re-alignment. Again, the procedure resulted in a marked increase in 
designability for both light and dark cluster representa9ves, indica9ng that flexible termini in the 
AFDB contribute to a significant decrease in designability of the AFDB compared to the PDB (Fig. 
5h).  

In summary, we conclude that flexibility is an addi9onal factor that can reduce the u9lity of 
refolding metrics, besides sequence length and secondary structure content. Our analysis also 
suggests that the previously observed reduced designability of the AFDB likely arises from 
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misalignments between target and designed structures driven by flexible or disordered regions 
(Fig. 5d, h), and that this issue is remedied by a simple alignment correc9on step. 

 
Figure 5. a) Designability of the best-ranked pMPNN designs of the PDB compared to the AFDB structures from 
either light or dark FoldSeek cluster representa<ves of AFDB. b) Schema<c illustra<on of the superposi<on of 
ESMfold-predicted structures of pMPNN designs onto PDB and full-length AFDB structures, where disordered 
regions cause misalignment and inflated scRMSD. c) Procedure for the aGenua<on experiment (AFDB-aG): 
structures with a 5-50 amino acid length difference between PDB and AFDB are truncated before alignment. d) 
Designability of the PDB, full-length AFDB (AFDB-full), and AFDB aGenuated to PDB length (AFDB-aG) designs. 
e) Mean pLDDT and RMSD values for PDB, AFDB-full, and AFDB-aG. f) Correc<ng misalignments due to 
disordered regions: outliers in the per-residue scRMSD are excluded during realignment, and the median 
scRMSD over all residues is taken. g) The effects of different structure alignment methods are compared using 
either the mean (no outline) or median (black outline) scRMSD. h) Designability data shown in a) (no outline) 
corrected with the median realigned scRMSD (black outline).  

2.5 Designability assessment is only moderately affected by folding and sequence design  
settings 

Having characterized the limita9ons of the refolding pipeline and designability metrics, we finally 
asked whether straighRorward workflow adjustments could mi9gate these. Using the so-far 
default structure predic9on and sequence design seNngs as a baseline, we varied the number of 
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AF2 recycles and the number of sequences generated with pMPNN, two key parameters likely to 
affect refolding metrics and commonly adjusted in protein design studies.11,16,24 

We randomly selected 500 proteins from our SCOPe dataset and first refolded either their natural 
sequences or the lowest (out of 8) scRMSD-ranked pMPNN designs using AF2 ss with varying 
recycles. In contrast to natural sequences, where designability remained very low regardless of 
the number of recycles, AF2 ss predicted designability threshold-passing structures with high 
confidence for 20% of pMPNN designs even without recycling. Although the highest designability 
of 50% was only reached aZer 48 recycles (at a run9me of about 20 9mes more compute than 0 
recycles), satura9on (>90% of maximum) occurred already at 12 recycles. Interes9ngly, we saw 
that picking one random from the resul9ng five AF2 models on average causes choosing a 
substan9ally less confident predic9on, but that this effect was much more pronounced for pMPNN 
designs than for na9ve sequences (Fig. 6b). Curiously, when checking model-specific effects by 
analyzing how oZen each of the five resul9ng AF2 models produced the highest pLDDT, we found 
model 2 to most frequently perform best (Fig. S10a), and model 1 most oZen worst. In absolute 
pLDDT units, the difference between a random and the best-performing model was very similar 
across different models, however (Fig. S10b). 

 
Figure 6. Effect of different AF2 ss structure predic<on and pMPNN sequence design sejngs on the designability 
of 500 randomly selected SCOPe proteins. a) Designability of natural and lowest-scRMSD pMPNN sequence as 
a func<on of the number of recycles. b) pLDDT difference between randomly choosing a single AF2 model (out 
of five) and the model yielding the highest-confidence predic<on for the proteins in a). c) Designability of the 
same set as in a) with 3 recycles, but with varying number of pMPNN sequences. 

We next varied the number of sequences designed with pMPNN from the default 8 up to 100, 
keeping the default sampling temperature T = 0.1 and the model’s training noise level of 0.2 Å, as 
shown to be op9mal for the highest in silico success rate.16 Notably, sampling more sequences 
with pMPNN at a fixed number of three recycles increased the frac9on of designable samples to 
a higher extent than increasing recycles did (Fig. 6c). In our benchmark, 100 instead of 8 sequence 
designs took only about four 9mes longer. 

Together, these experiments show that the low frac9on of designable na9ve sequences can only 
be remedied to a limited extent by increasing recycles as well as predic9ng and selec9ng from all 
five models. Conversely, designability with pMPNN sequences, which are already easier to fold for 
AF2 in general, can addi9onally be boosted by simply designing more sequences. 
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3 Discussion 
With the growing accessibility and ease of use of protein design tools, the field is rapidly expanding 
and a>rac9ng researchers from diverse areas of the biosciences. Refolding-based designability 
assessment has become standard prac9ce in nearly all design studies. Here, we systema9cally 
evaluated this approach and highlighted several limita9ons that may not be immediately evident, 
par9cularly to newcomers in the field. 

We first show that the inclusion of evolu9onary informa9on compromises the reliability of both 
AlphaFold2 and ESMfold in evalua9ng sequence-structure compa9bility. This is evident from AF2’s 
poor ability to discriminate between nonsensically mutated variants and their natural or well-
designed counterparts. These findings extend the widely held view that structure predic9on 
models cannot reliably infer the effects of single muta9ons on stability or fold.51,52 One can 
speculate that the underlying causes might be similar: the dominance of strong sequence-to-
structure signals from wild-type residues, the lack of explicit physics-informed losses incen9vizing 
folding models to predict muta9on effects, and the absence of non- or misfolded proteins in the 
training data.  

Crucially, the use of MSAs markedly diminishes the predic9ve power of pLDDT and scRMSD for 
experimental success, as shown by our analysis of literature-obtained sequences with known 
experimental outcomes. Although ESMfold does not explicitly use MSAs, its performance typically 
falls between that of AF ss and AF MSA. Since ColabFold—one of the most widely used predic9on 
plaRorms—computes MSAs by default, our findings call for cau9on when redesigning natural 
proteins, where refolding metrics are most easily confounded. The con9nued use of MSA mode in 
numerous design studies11,29,30,31,32 and meta-analyses41 highlights the need for a cri9cal 
reassessment of current best prac9ces. 

Our results also support the general no9on that confidence metrics from AF2 single sequence 
mode, and to a lesser extent by ESMfold, are correlated with experimental success. However, 
AF2 ss fails to predict correct structures of many natural sequences, rendering it unreliable for 
assessing designability when the sequence iden9ty of a design to a natural sequence is high, even 
with many recycles. AF2 ss performance also depends on sequence length and structural 
composi9on, with all-α proteins folding most successfully. Notably, pMPNN-designed sequences 
tend to receive high pLDDT and low scRMSD values, underscoring a key limita9on of refolding: 
structure predic9on models are not true oracles of stability. They capture protein energe9cs only 
implicitly and may assign high confidence to sequences that are structurally plausible in silico, but 
biophysically unstable or non-func9onal in reality. This limita9on is also relevant for model 
development: efforts such as training sequence design models by rewarding designability risks 
further infla9ng false posi9ves and could ul9mately obsolete the metric for oracle use.23 

Finally, we iden9fy a broader limita9on in the current designability defini9on—its dependence on 
full-body superposi9on when calcula9ng scRMSD. This superposi9on is highly sensi9ve to flexible 
or disordered regions that lack a stable conforma9on and may adopt different states under 
different folding runs and models. Such regions can inflate scRMSD values beyond designability 
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thresholds even when the structured part is correctly predicted and aligned. This straighRorward 
explana9on of the observed designability discrepancies between experimental and predicted 
structures allowed us to propose a>enua9on or a simple outlier rejec9on and realignment 
procedure to alleviate the issue. This insight can help complemen9ng approaches aiming to 
“debias” the AFDB,53 and our findings may help explain decreased performance of classifiers54,55 
and genera9ve models56 when switching between experimental and predicted structures. Our 
results also align with previous observa9ons that higher structural flexibility is correlated with 
increased scRMSD in small monomeric SCOPe proteins.57 Taken together, our findings indicate that 
the prevailing designability defini9on inherently favors compact, rigid structures and 
underrepresents flexible or disordered regions. As the protein design field increasingly seeks to 
encode flexibility, we hope that our findings underscore the need for greater awareness of this 
bias and for developing more adequate metrics in the future. 

 

 

4 Methods 
4.1 Self-consistency pipeline 
The goal of the self-consistency (refolding pipeline) is to in silico assess whether a designed 
sequence encodes a target protein structure, i.e. es9mate the probability of a structure given a 
sequence. If a refolded natural or designed sequence has a pLDDT higher and a self-consistency 
root mean square devia9on (scRMSD) to the target structure lower than a certain pre-defined 
threshold, the sequence is called designable. We depict a schema9c visualiza9on of the refolding 
pipeline in Fig. 1. 

Designability computa6on 
Designability evalua9on based on refolding metrics is well-established in the literature,8,21,26,35 and 
relies on both pLDDT and scRMSD. Unless stated otherwise, scRMSD is computed by aligning the 
Cα	coordinates of the predicted model to the target structure using an adapted version of the 
Kabsch algorithm, available at: h>ps://github.com/nghiaho12/rigid_transform_3D. We report 
pLDDT as the average per-residue value over the full protein length. Unless explicitly stated 
otherwise, we consider a sequence designable if it achieves pLDDT ≥	70	and scRMSD ≤2.0	Å. 

Sequence design with ProteinMPNN 
Whenever we designed sequences with ProteinMPNN (pMPNN), unless stated otherwise, we used 
the default inference seNngs with model v_48_020: sampling temperature T	=	0.1, backbone 
noise level during training =0.2	 Å, and 8 sequences per design. AZer refolding, the pMPNN 
sequence with the lowest RMSD to the target backbone was used for further evalua9on. 

4.2 Structure prediction 
In our experiments, we predicted structures of a given set of sequences using four different 
approaches: with AlphaFold2 (AF2) using either (1) single sequence mode with no MSA (AF2 ss), 
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(2) using an MSA (AF2 MSA), (3) using an MSA where the columns of mutated residues are masked 
(AF2 MSA mask) or (4) using ESMfold. 

The full MSAs were generated with MMseqs2 using the colab_search implementa9on provided 
by ColabFold 1.5.2, with default seNngs. No templates were provided, and the databases 
uniref30_2202_db and colabfold_envdb_202108_db were used for the DB1 and DB3 parameters, 
respec9vely. For the AF2 MSAs with masks, we removed na9ve sequence context from the MSA 
by masking en9re columns with the token X, and performed structure predic9ons using the same 
seNngs as for the unmasked AF2 MSAs. 

All AF2 predic9ons were performed with a locally installed ColabFold 1.5.2 version with 3 numbers 
of recycles and 5 different models if not explicitly stated otherwise. In all cases, the highest-ranked 
plDDT model was used. We provide no templates for the AF2 predic9ons and do not relax them. 
For AF2 single sequence mode predic9ons, we provide no MSA (msa_mode = single_sequence) to 
the model and keep other seNngs as described above. For structures predicted with ESMfold, we 
used default seNngs with 3 numbers of recycles and a single model output. We ran all predic9ons 
on an NVIDIA A100 (40 GB) GPU. Reported inference 9mes in Fig. 6 were also computed with 
ColabFold in batch mode. 

4.3 SCOPe dataset 
As an ini9al dataset, we used the SCOPe dataset58 split by 40% sequence iden9ty (astralscopedom-
seqres-gd-sel-gs-bib-40-2.08.fa, provided at h>ps://scop.berkeley.edu) to ensure minimal 
sequence homology and structural redundancy between proteins. We further subset the SCOPe 
dataset to include single-domain proteins with lengths between 50 and 512 residues. For 
addi9onal details about dataset subsets created for specific experiments, we refer the reader to 
the corresponding Methods sec9ons described below. 

4.4 Mutagenesis of natural proteins 
Selec6on of proteins 
We randomly selected 50 small, dis9nct protein domains from the SCOPe dataset introduced in 
Methods 4.3 that are classified as designable if predicted with AF2 single sequence mode. To avoid 
the selec9on being dominated by small helical proteins, we ensured that each protein included 
had a length greater than 60 residues and a helical content between 30% and 60%. For all 
sequences, abundant evolu9onary informa9on in the form of an MSA is present (Fig. S2, SCOPe 
wt). Mutagenesis of natural sequences. Star9ng from na9ve sequences, we gradually mutated 
from 10% to 60% of residues to random natural amino acid tokens. For each frac9on of mutated 
residues, we generated 64 sequences to reduce the impact of sequences that may contain less 
disrup9ve muta9ons by chance. In total, this dataset contains 19200 protein sequences. Full-
length MSAs and masked column MSAs were generated for each sequence as described in 
Methods 4.2. In this experiment, we computed designability as a frac9on of predicted models 
passing the criteria defined as: scRMSD ≤	2.0 Å and pLDDT ≥	 (70, 80, 85). We vary the pLDDT 
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threshold since pLDDT shows variability across different protein design studies, as explained in the 
introduc9on. 

Mutagenesis of ProteinMPNN designs 
To further evaluate the sensi9vity of designability to random muta9ons in the context of pMPNN-
designed sequences, we repeated the experiment, muta9ng the pMPNN designs instead of 
natural ones. For each of the 50 proteins, we generated 8 pMPNN sequences and refolded them 
using the AF2 ss. The pMPNN-designed sequence with the lowest scRMSD to the target structure 
was used as input for the same mutagenesis experiment as described for the na9ve sequences . 

Biophysical metrics 
To demonstrate the unphysical nature of the mutated sequences, the energy and aggrega9on 
propensity were calculated for all mutated sequences that passed the designability thresholds in 
AF2 MSA mode. The Rose>a energy and spa9al aggrega9on propensity (SAP) were calculated 
using the PyRose>a,39 using the predicted models generated by AF2 MSA as poses. The energy of 
the poses was calculated using the default energy func9on (ref2015),4 with the output reported 
in Rose>a Energy Units (REU). The SAP scores were calculated using the SapScoreMetric() class in 
the pyrose>a.rose>a.core.pack.guidance_scoreterms.SAP module. 

4.5 Effect of evolutionary information on refolding metrics as proxies of experimental success 
SoluProt Dataset 

Entries from the SoluProt database were matched with their PDB IDs, and all entries for which an 
experimental structure was available were selected, resul9ng in 925 entries of 74 insoluble and 
851 soluble proteins. To control for length, the largest possible number of soluble entries were 
selected that matched the same length distribu9on as the 74 insoluble entries using 10 bins, 
resul9ng in a set containing 74 insoluble and 220 soluble entries (Fig. S3). Structures of all entries 
were predicted using AF2 single sequence mode, AF2 MSA, and ESMFold as reported in Methods 
4.2. Significance was calculated with Fisher’s exact test (p < 0.05). To control for any biases 
introduced in the above selec9ons, a further 1000 entries were randomly selected from the 
SoluProt database and ran in the same manner described above, this 9me only calcula9ng pLDDT 
as most entries do not have an experimental ground truth structure available (Fig S4).  

Dataset of experimentally tested designs 
To compare differences in the refolding pipeline to experimental outcomes, we obtained 
experimentally verified sequences from 7 different publica9ons: (1) A set of 42 water-soluble de 
novo β-barrels generated using ab ini9o energy calcula9ons obtained from Dou et al.59 (2) a set of 
81 transmembrane de novo β-barrels generated using ab ini9o energy calcula9ons obtained from 
Vorobieva et al.60 (3). A set of 85 membrane proteins solubilized with AF2seq and pMPNN 
obtained from Goverde et al.25 (4). A set of 70 de novo designs generated by the Foldit community 
and experimentally verified by Koepnick et al.61 (5). A set of 87 de novo P-loop and Rossman fold-
like proteins generated using ab ini9o energy calcula9ons obtained from Koga et al.62 (6) a set of 
40 novel ⍺-helical proteins generated using assembled helix fragments by Sakuma et al.63 (7) a set 
of 60 novel ⍺/β-fold proteins generated using fragment assembly simula9ons by Minami et al.64  
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Evalua6on 
Structures of all sequences were predicted using AF2 single sequence mode, AF2 MSA, and 
ESMFold as reported in Methods 4.2. Some of the data, such as the β-barrels reported by 
Hermosilla et al., required 48 recycles to fold properly. For completeness, we report metrics for 
both the default 3 and adjusted 48 recycles. The ROC curves independent of thresholds for both 
pLDDT and RMSD are reported. Median per-residue Neff scores were calculated as reported in 
Jumper et al.1 

Performance of different threshold regimes for either precision (priori9zing high success rates) or 
F1 score (balancing high success rates with iden9fying sufficient hits) was inves9gated by varying 
the pLDDT threshold between 50 and 100 in steps of 5, and the scRMSD threshold between 0 and 
5 in steps of 0.5Å. To guarantee well folded structures for all datasets, the metrics using 48 recycles 
were used. Op9mized thresholds were selected based on the maximum precision or F1 scores. 
When mul9ple threshold combina9ons resulted in the same maximum precision or F1 score, the 
most stringent set of thresholds was chosen to facilitate closer clustering of the thresholds where 
possible. Confusion matrices were calculated for the op9mized F1 thresholds to demonstrate the 
increase in the true posi9ve rate between AF2 ss and AF2 MSA, and heatmaps were plo>ed to 
indicate the difference in performance between AF2 ss and AF2 MSA under all inves9gated 
threshold regimes.  

4.6 Limitations of designability assessment with AF2 ss 
Designability of natural proteins 
In this experiment, we ran the refolding pipeline on the whole SCOPe dataset described in 
Methods 4.3. Besides filtering for length filter between 50 and 512 residues, we filtered the SCOPe 
to contain only complete, single-domain proteins, and further excluded small and membrane 
proteins from the dataset (classes f and g). Finally, we excluded two abundant repe99ve SCOPe 
folds a.118 (alpha-alpha superhelix) and b.69 (7-bladed beta-propeller) which would otherwise 
result in ar9facts in the designability/length distribu9on. These refinements resulted in a subset 
of 9916 of the original 15177 proteins from the SCOPe dataset. We predict the structures of 
natural or lowest scRMSD-ranked pMPNN designed sequences using AF2 single sequence mode 
with designability defined as pLDDT ≥	70 and RMSD ≤	2.0 Å, as described in Methods 4.1. The 
effect of secondary structure was evaluated using the pyDSSP implementa9on of the DSSP 
algorithm (h>ps://github.com/ShintaroMinami/PyDSSP).  

To evaluate the effect of SCOPe class on designability of pMPNN sequences, we control for the 
length effect by selec9ng predicted structures of lowest scRMSD-ranked pMPNN-designed 
sequences with a uniform length distribu9on between 60 and 300 residues for SCOPe classes a 
(all-alpha), b (all-beta), c (a/b proteins), and d (alpha+beta). For each class, the largest number of 
proteins were selected that could s9ll guarantee a flat distribu9on within the selected length 
range, using 15 bins. This resulted in flat distribu9ons with 126 proteins for class a, 252 for class 
b, 252 for class c, and 462 for class d respec9vely.  
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4.7 Effect of structure prediction and ProteinMPNN settings on designability computed with 
AF2 ss 

From the SCOPe dataset described in Methods 4.3, we randomly selected 500 proteins, verifying 
that the length distribu9on was representa9ve of the total SCOPe distribu9on. This set was used 
to conduct experiments with a varying number of AF2 recycles (0-48) and pMPNN sequences (8-
100). We predict the structures of natural or pMPNN-designed sequences using AF2 single 
sequence mode with designability defined as pLDDT ≥	70 and scRMSD ≤	2.0 Å, as described in 
Methods 4.1. 

4.8 Designability of the AlphaFold Database (AFDB) 
Dark clusters in the AlphaFold Database (AFDB) 
Barrio-Hernández et al.44 provides a FoldSeek-clustered version of the AlphaFold Database, in 
which clusters are classified as dark if none of their members can be annotated with PFAM or 
TIGRFAM20 domains in the UniProt/TrEMBL or SwissProt databases. From the cluster overview 
dataset available at h>ps://afdb-cluster.steineggerlab.workers.dev/, to align our data with the 
observa9on made by Lin et al.,43 we randomly selected 1000 dark cluster representa9ves that 
fulfilled the following criteria: each protein belonged to a cluster with at least 10 members and 
had a representa9ve structure with pLDDT ≥80. This set represents protein samples that are 
dis9nct from any proteins found in PDB. To compare, 1000 non-dark cluster representa9ves and 
1000 SCOPe domains with iden9cal length distribu9ons were chosen using the same criteria, and 
are referred to in the text as the “light” and “PDB” sets respec9vely. To assess the effect of flexible 
regions on the AFDB, we use both the light and dark AFDB sets as representa9ves. Although this 
risks over-represen9ng dark clusters, our result shows these two datasets exhibit similar 
designability.  

AlphaFold database aGenua6on 
For the SCOPe dataset described in Methods 4.3, we obtained the mappings of each protein to its 
corresponding UniProt entry from the Structure Integra9on with Func9on, Taxonomy, and 

Sequence (pdb_chain_scop_uniprot.tsv, provided at h>ps://www.ebi.ac.uk/pdbe/docs/ 
siZs/quick.html) and downloaded the AF2 predic9ons from the AlphaFold Database (AFDB). 
Sequences encoding the AFDB models were extracted, and 1000 samples were randomly selected 
where the length difference between the SCOPe and AFDB sequences for the same UniProt 
mapping was greater than 5 but less than 50 residues. We a>enuated the structures of AFDB 
models to the PDB-deposited length for subsequent analyses, as described in Sec9on 3.5. 
Sequences were designed for the PDB, full-sequence AFDB, and a>enuated AFDB structures using 
pMPNN analogously to Methods 4.1. Structure predic9ons were performed with ESMfold using 
default seNngs. 

scRMSD correc6ons 

To correct misalignment and inflated scRMSD due to flexible N- and C-terminal regions, we 
realigned the light and dark AFDB sets and the corresponding PDB set with different methods. We 
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tested realignment with  TMalign,50 Sheba, 49 and the “superimpose_without_outliers“ func9on 
implemented in Bio9te.48 As residues can be excluded from the scRMSD during the sequence 
alignment when using TMalign and Sheba, only the structural alignment func9onality is used, and 
the final scRMSD is calculated using np.linalg.norm. The outlier-excluded realigned scRMSD is 
calculated using the following steps. (1) per-residue RMSD is calculated using the default Kabsch 
algorithm. (2) outliers among the per-residue RMSD values are selected if the per-residue RMSD is 
larger than the median RMSD + 1.5x the Median Absolute Devia9on (MAD). (3) The scRMSD is 
realigned while masking the selected outlier residues. (4) Either the mean or median scRMSD of 
the full structure is reported. 
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